Extracting Keyphrases from Research Papers Using Citation Networks
نویسندگان
چکیده
Keyphrases for a document concisely describe the document using a small set of phrases. Keyphrases were previously shown to improve several document processing and retrieval tasks. In this work, we study keyphrase extraction from research papers by leveraging citation networks. We propose CiteTextRank for keyphrase extraction from research articles, a graph-based algorithm that incorporates evidence from both a document’s content as well as the contexts in which the document is referenced within a citation network. Our model obtains significant improvements over the state-of-the-art models for this task. Specifically, on several datasets of research papers, CiteTextRank improves precision at rank 1 by as much as 9-20% over state-of-the-art baselines.
منابع مشابه
Citation Summarization Through Keyphrase Extraction
This paper presents an approach to summarize single scientific papers, by extracting its contributions from the set of citation sentences written in other papers. Our methodology is based on extracting significant keyphrases from the set of citation sentences and using these keyphrases to build the summary. Comparisons show how this methodology excels at the task of single paper summarization, ...
متن کاملCitation-Enhanced Keyphrase Extraction from Research Papers: A Supervised Approach
Given the large amounts of online textual documents available these days, e.g., news articles, weblogs, and scientific papers, effective methods for extracting keyphrases, which provide a high-level topic description of a document, are greatly needed. In this paper, we propose a supervised model for keyphrase extraction from research papers, which are embedded in citation networks. To this end,...
متن کاملKeyphrase Extraction Using Deep Recurrent Neural Networks on Twitter
Keyphrases can provide highly condensed and valuable information that allows users to quickly acquire the main ideas. The task of automatically extracting them have received considerable attention in recent decades. Different from previous studies, which are usually focused on automatically extracting keyphrases from documents or articles, in this study, we considered the problem of automatical...
متن کاملIncorporating Expert Knowledge into Keyphrase Extraction
Keyphrases that efficiently summarize a document’s content are used in various document processing and retrieval tasks. Current state-of-the-art techniques for keyphrase extraction operate at a phrase-level and involve scoring candidate phrases based on features of their component words. In this paper, we learn keyphrase taggers for research papers using token-based features incorporating lingu...
متن کاملExtracting Discriminative Keyphrases with Learned Semantic Hierarchies
The goal of keyphrase extraction is to automatically identify the most salient phrases from documents. The technique has a wide range of applications such as rendering a quick glimpse of a document, or extracting key content for further use. While previous work often assumes keyphrases are a static property of a given documents, in many applications, the appropriate set of keyphrases that shoul...
متن کامل